APRESENTAÇÃO FINAL DO EVENTO

ESTUDO SOBRE

COMBUSTÍVEIS **BAIXO CARBONO**

EM PORTUGAL PERSPETIVAS PARA 2030

DESENVOLVIDO POR:

MEDIA PARTNERS:

ORADOR CONVIDADO

Descarbonização dos transportes impulsionada pelo geopolítica

Acordo Paris, 2015

Green Deal, 2019

• Fit for 55, 2021

- Guerra da Ucrânia, 2022

- REPowerEU, 2022
- Diretiva RED III, 2023

Novo contexto geopolítico

"Drill, baby drill" versus Soberania energética?

Diretivas e regulamentos

Transportes: limites de emissões de CO2, metas de incorporação de combustíveis de baixo carbono (RED III), infraestruturas de carregamento e abastecimento (AFIR). Objetivo biometano: 35 bcm

Objetivo Hidrogénio verde: 10 milhões ton (produção interna) 10 milhões ton (importações)

Desafio: Transposição da Diretiva REDIII

- PNEC 2030
- Pacote de Mobilidade Verde
- Plano de Ação para o Biometano 2024-2040.
- Acesso ao financiamento e aos mercados Europeus

Dimensões estratégicas da Política Energética em linha com o Plano Draghi

Soberania energética

Compromisso adequado entre descarbonização e competitividade

Reindustrialização verde e mobilidade sustentável

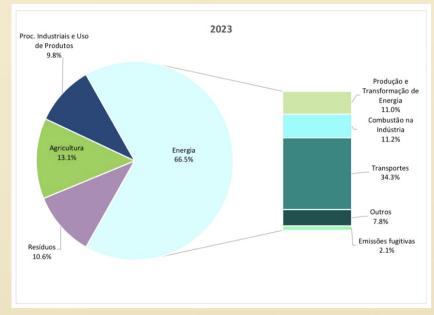
Inovação tecnológica e organizacional

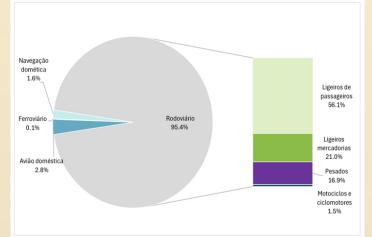
Complementaridade entre Eletrificação e Combustíveis de baixo carbono

Utilização dos recursos endógenos(*)

Em síntese:

Uma mistura fina de ambição com pragmatismo;


Glocalização: pensar global mas com execução local;


Não deixar para amanhã o que se pode fazer hoje com custos mais eficientes.

(*)Incluindo a valorização resíduos.

Estrutura setorial das emissões de CO2 e evolução das emissões nos transportes

Fonte: Inventário Nacional de Emissões de GEE de 2025, APA

Estratégias de descarbonização setorial

Em 2024, a produção renovável abasteceu 71% do consumo de energia elétrica. É necessário reforço da flexibilidade em que os combustíveis de baixo carbono terão um papel central.

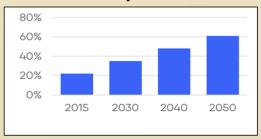
Eletrificação nos processos industriais que exigem produção de calor a baixas e médias temperaturas. Utilização dos gases renováveis nos restantes (e também da biomassa).

"Uma conjugação equilibrada de eletrificação, biocombustíveis avançados, biometano e RFNBOs", Estudo sobre CBCs em Portugal.

A eletrificação dos edifícios é a solução mais eficiente.

Complentaridade entre eletrificação e os combustíveis de baixo carbono

Eletrificação


Processos industriais de baixa/média temperatura

Veículos elétricos ligeiros

Bombas de calor nos edifícios

Eletrificação indireta: eletricidade utilizada como input na produção de hidrogénio verde, e-combustíveis, amónia ou metanol verde

Eletricidade em % da procura final de energia

Fonte: Eureletric.

Combustíveis de baixo carbono

Transporte pesado de longa distância: transporte pesado rodoviário, marítimo e aviação

Armazenamento sazonal: gás (biometano ou hidrogénio) pode ser armazenado em larga escala e a longo prazo, ao contrário das baterias

Mistura de gás natural com hidrogénio renovável e outros gases renováveis como o biometano nas redes de gás natural

Indústria de alta temperatura: aço, cimento, cerâmica e petroquímica

Matérias-primas químicas: hidrogénio renovável é essencial para fertilizantes, plásticos, refinação

Políticas públicas com impactos no desenvolvimento dos combustíveis de baixo carbono

Desenvolvimento de infraestruturas(*)

Dinamização da procura

Regulação que defina as regras com uma dinâmica adaptativa

Inovação tecnológica e organizacional

Certificação de qualidade e garantia de origem

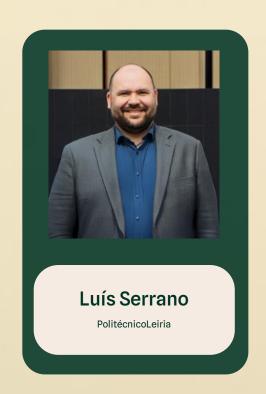
Incentivos eficazes e eficientes

Redução da dependência de importações(**)

Simplificação administrativa no licenciamento

- (*) Incluindo a recolha seletiva e a logística de aprovisionamento, transporte e valorização de resíduos.
- (**) De matérias primas críticas, incluindo resíduos.

Muito Obrigado pela atenção!


Contacto: vitorsantos55@outlook.pt

Cláudia P. Silva PCBC

ESTUDO SOBRE

COMBUSTÍVEIS BAIXO CARBONO

EM PORTUGAL PERSPETIVAS PARA 2030

DESENVOLVIDO POR:

MEDIA PARTNERS:

OBJETIVOS GERAIS

- 1 Identificar as metas europeias e nacionais, oportunidades & barreiras
- 2 Identificar as tecnologias de produção de CBCs em PT
- 3 Identificar as potenciais tecnologias de produção de CBCs

Combustíveis de Baixo Carbono

- Estabelecer o balanço entre necessidades de MPs endógenas e disponibilidade Matérias-primas
- 5 Definir o potencial de descarbonização do setor dos transportes
- 6 Identificar possíveis caminhos e potenciais implicações da descarbonização

OBJETIVO 1

Identificar as metas europeias e nacionais, oportunidades & barreiras

Síntese das Metas Europeias

Iniciativa Pr	ncipais Metas
---------------	---------------

Até 2030:

- Consumo final de energia renovável no setor dos transportes
 - 29% (alternativa: -14,5% de intensidade de GEEs)

Gases com Efeito de Estufa

- Biocombustíveis avançados + biogás + RFNBOs
 - \geq 5,5% (mín. 1% RFNBOs)

Combustíveis Renováveis de Origem não-Biológica

- Biocombustíveis 1ª Geração
 - Máx. 7% provenientes de culturas alimentares ou nível de 2020 + 1% (consoante o que for menor)
- Biocombustíveis derivados de resíduos lipídicos + biogás (anexo IX, parte B)
 - Máx. 1,7% proveniente de OAU e GA

Óleos Alimentares Usados e Gorduras Animais

RED III

Diretiva das Energias Renováveis

Alguns Fatores Multiplicadores - RED III

Fonte de energia final	Multiplicador
Energia elétrica renovável (veículos elétricos)	4 ×
Biocombustíveis avançados e RFNBOs (uso geral)	2 ×
Biocombustíveis avançados + biogás em aviação e navegação marítima	1,2×
RFNBOs em aviação e navegação	1,5 ×

Síntese das Metas Nacionais

Iniciativa	Meta	Ano a ser atingida
PNEC 2030	-40% das emissões de GEEs no setor dos transportes, face a 2005 ≈ -7,979 Mt CO₂ equivalente	2030
	29% de energias renováveis no consumo final de energia nos transportes considerando incorporação de biocombustíveis avançados e biometano	2030
PAB 2024-40	10% (base energética) de incorporação de Biometano e Biocomb. Avançados nos combustíveis rodoviários	2030
RNC2050	-98% das emissões de GEEs do setor dos transportes, face a 2005	2050
	94 a 96% de energias renováveis no consumo final de energia nos transportes	2050

Síntese da Análise SWOT

- Metas claras
- Incentivos financeiros
- Disponibilidade de biorresíduos
- Valorização de soluções mistas (CBCs + eletricidade)

- Algumas metas nacionais menos
 ambiciosas que as da UE
 - Ausência de medidas específicas para CBCs líquidos e gasosos

- Desenvolvimento da cadeia de valor em CBCs
- Criação de emprego altamente qualificado
- Financiamento comunitário

- Custos de produção e das MPs
- Atraso na transposição da RED III
- Infraestruturas insuficientes (biorrefinarias)
- Instabilidade política e económica

Conclusões Parciais

UE e PT

Trajetória
desafiante para a
descarbonização
dos transportes

2

CBCs no transporte rodoviário ligeiro e pesado

São essenciais para a mobilidade a médio e longo prazo, a par da energia elétrica

São essenciais para uma transição energética social, ambiental e economicamente justa

3

Transportes marítimo e aéreo

Os CBCs líquidos e gasosos são essenciais para estes setores de difícil eletrificação

OBJETIVO 2

Identificar as tecnologias de produção de CBCs em PT

Produção de Biocombustíveis em Portugal

Tabela 2.1. Produção por tecnologia de biocombustíveis em Portugal (m³)

Biocombustível	2020	2021	2022	2023	2024
FAME	269281	262727	286680	277825	238547
HVO	32109	9687	5494	0	0
co-HVO	0	0	0	33882	57938
Bionafta	0	0	0	245	280
Total	301390	272414	292174	311952	296765

Em 2022, a capacidade instalada de produção de biocombustíveis pelas empresas, em Portugal, atingiu cerca de 770000 m³.

- O valor de produção efetiva nacional entre 2022 e 2024, foi apenas de cerca de 35% a 40% do valor da capacidade instalada (LNEG) (Tabela 2.1).
- O Biodiesel e o HVO (óleo vegetal hidrotratado) têm sido os principais biocombustíveis líquidos produzidos, sendo a produção de Biodiesel respetivamente de 6 a 8 vezes superior à de HVO em 2023 e 2024, apesar do ligeiro aumento da produção de HVO (Tabela 2.1).

Produção de Biocombustíveis em Portugal

Tabela 2.2. Produção de biocombustíveis em Portugal por matéria-prima (m³)

MP	2020	2021	2022	2023	2024
1 ^a G	89 206	64 116	46 196	42 912	25 117
OAU/GA	177 721	166 53	199 350	149 781	62 538
AVA	8 767	43 598	45 184	118 471	189 343
Total	275 694	274 238	290 730	311 164	276 999

De 2021 e 2024, a produção de biocombustíveis a partir de resíduos de OAU/GA e AVA, variou entre cerca de 76% e 90%, sendo respetivamente 15,9% e 68% produzidos por AVA (Tabela 2.2).

OAU (Óleos Alimentares Usados); GA (Gorduras Alimentares); AVA (Matérias Primas Avançadas).

Produção de Biocombustíveis em Portugal

- Evidencia-se a tendência de incorporação crescente dos resíduos e matériasprimas AVA em detrimento da utilização de culturas alimentares.
- A produção de biocombustíveis encontra-se fortemente dependente da importação de matérias-primas, sobretudo OAU/GA e resíduos de óleos vegetais
- Para a produção de gasolina rodoviária, o Bioetanol foi totalmente importado.

Origem das matérias-primas para a Produção de Biocombustíveis em Portugal

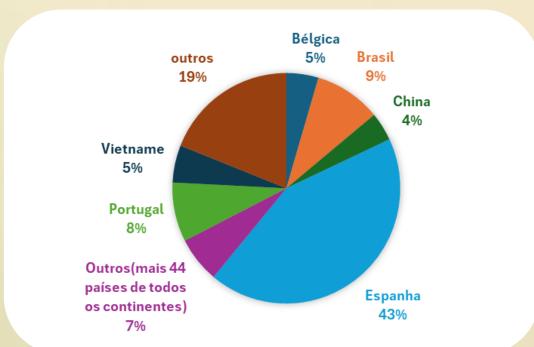


Figura 2.1. Origem das matérias-primas (MP) para a produção nacional de biocombustível e respetivas percentagens do valor total, em 2022.

As matérias-primas para a produção nacional de Biodiesel foram provenientes fundamentalmente dos seguintes países em 2022:

- Espanha (43%),
- Portugal (8%)
- e Brasil (9%).

Verificaram-se importações de outros países com pouca expressão individual.

Prioridades técnicas e operacionais para otimizar a contribuição nacional para a meta de incorporação de energia renovável no setor dos transportes até 2030:

- Medidas eficientes que incentivem a valorização de resíduos, com enfoque na recolha seletiva e logística de aprovisionamento e transporte de OAU, GA e resíduos agroindustriais passíveis de conversão em CBCs;
- Criação de regimes de apoio diferenciados para unidades de produção de biocombustíveis
 AVA e Combustíveis Renováveis de Origem Não Biológica (RFNBOs), com base em critérios
 técnicos que priorizem a flexibilidade tecnológica, a eficiência energética e a integração com fontes de energia
 renovável;
- Incentivo ao desenvolvimento de soluções tecnológicas para a produção nacional de bioetanol ou substitutos da gasolina de origem renovável, com base em matérias-primas celulósicas ou resíduos da agroindústria, indo ao encontro do aumento da frota rodoviária a gasolina;

Prioridades técnicas e operacionais para otimizar a contribuição nacional para a meta de incorporação de energia renovável no setor dos transportes até 2030 (continuação):

- Simplificação dos procedimentos de licenciamento ambiental e industrial para unidades de pequena e média escala, apoiados em critérios técnicos adequados ao risco e impacte ambiental estimado;
- Investimento em I&DT aplicado à caracterização, pré-tratamento e otimização de linhas de conversão de matérias-primas residuais e de baixa qualidade, procurando a sua compatibilização com os requisitos de qualidade dos CBCs;
- Levantamento sistemático, no território nacional, de matérias-primas com potencial para utilização na produção de CBCs;
- Estabelecimento de metas técnicas que permitam a substituição gradual de matériasprimas importadas por matérias-primas endógenas, integrando critérios de sustentabilidade, e desenvolvimento regional resiliente, alicerçados na viabilidade tecnológica.

OBJETIVO 3

Identificar as potenciais tecnologias de produção de CBCs

Em Portugal, para além da capacidade de produção instalada atualmente, existem projetos em fase de implementação:

Projetos da Galp

Produção de HVO e SAF Garantia

Cumprimento da meta mínima de 5,5% da Diretiva RED III

(considerando o aumento previsto do consumo de combustíveis)

Tabela 3.1. Listagem de projetos de produção em fase de implementação e desenvolvimento na Galp em Portugal

CBCs	Projeto	Empresa/ /Localização	TRL	Tecnologia	Estado Atual/Fase	Matéria-prima	Capacidade
HVO	HVO@Galp	Galp / Mitsui Refinaria Sines	7-9	Co-processamento de HVO em refinarias convencionais	Em construção (2025)	Resíduos sólidos urbanos, resíduos oleaginosos e misturas de petróleo	262,7 mil t/ano
SAF	HVO@Galp	Galp / Mitsui Refinaria Sines	7-9	Co-processamento de HVO em refinarias convencionais	Em construção (2025)	Resíduos sólidos urbanos e óleos avançados misturas de petróleo	193 mil t/ano

Dificuldade em conseguir o aumento da produção para níveis próximos da capacidade instalada resulta de:

Deficiente recolha de matérias-primas nacionais e dos elevados custos de importação, ampliados pelas revisões sucessivas da regulamentação aplicada aos biocombustíveis.

A expansão da capacidade de produção pelos processos existentes ou a adoção de tecnologias inovadoras para a produção de CBCs ou do bioetanol, encontra-se muito dependente de incentivos governamentais e de políticas de apoio à transição energética.

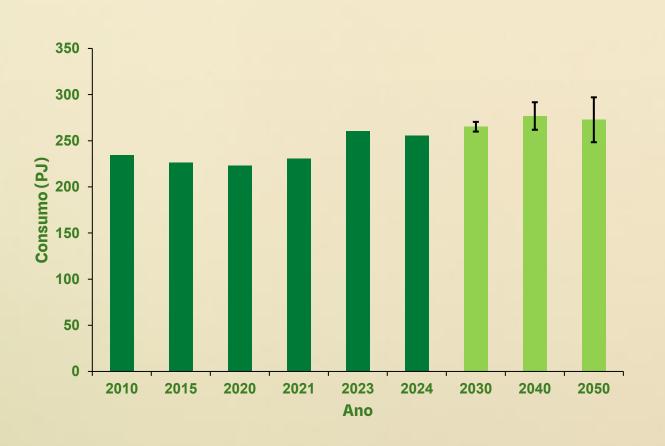
Incerteza quanto à continuidade dos veículos ligeiros com motores de combustão interna, não tem incentivado o investimento no desenvolvimento de CBCs.

Na conjuntura atual, os projetos mais flexíveis para a produção de biocombustíveis para os setores rodoviário, marítimo e da aviação poderão ser os mais atrativos, nomeadamente o caso do projeto da Galp, pois compreendem a produção de dois CBCs: HVO e SAF.

Salienta-se a existência de tecnologias maduras para a produção de CBCs, em que a viabilidade económica poderá ser garantida através de uma gestão eficiente de resíduos e da utilização de matérias-primas avançadas.

As projeções futuras para o setor dos CBCs são complexas e influenciadas por múltiplos fatores: regulatórios, económicos e pela disponibilidade de matériasprimas.

Neste contexto, a aposta nacional nos CBCs avançados representa um passo estratégico não só para o cumprimento das metas climáticas, como também como contributo para a autonomia energética do país.



OBJETIVO 4

Estabelecer o balanço entre necessidades de MPs endógenas e disponibilidade

Consumo de energia final nos transportes | Projeção para 2030/40/50

- <u>Ligeiro</u> aumento até 2030 e 2040
 - 2030: 265 PJ (6334 ktep)
 - 2040: 277 PJ (6611 ktep)
- Estabilização ou ligeira diminuição até 2050
 2050: 2720 PJ (6513 ktep)
 - Associada ao aumento da eficiência da utilização da energia e a fatores socioeconómicos
 - Adesão à mobilidade elétrica
 - Custos de vetores energéticos
 - entre outros

Vetores Energéticos nos Transportes | Cenários para 2030

1

Cauteloso

Evolução conservadora

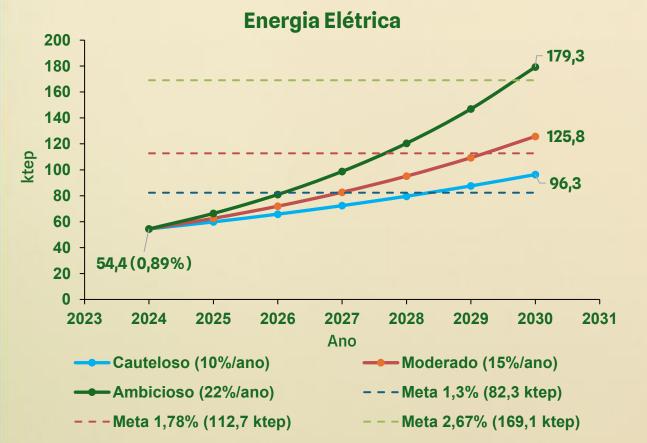
(crescentes ou decrescentes, dependendo do vetor energético final) 2

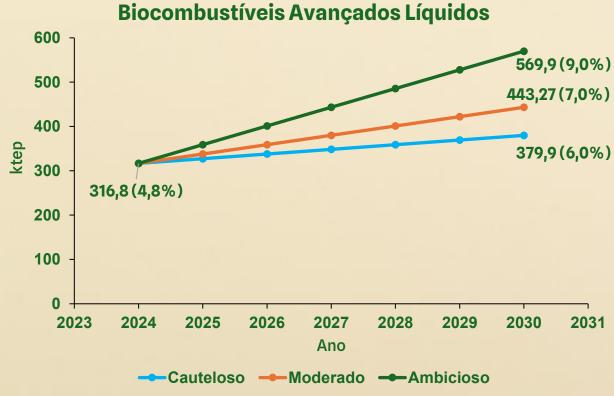
Moderado

Evolução intermédia moderada

das projeções dos vetores energéticos finais

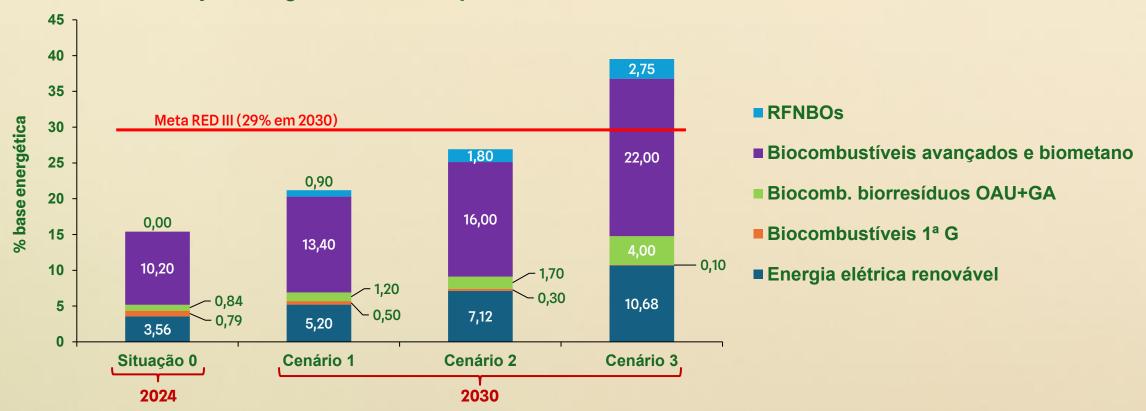
3


Ambicioso

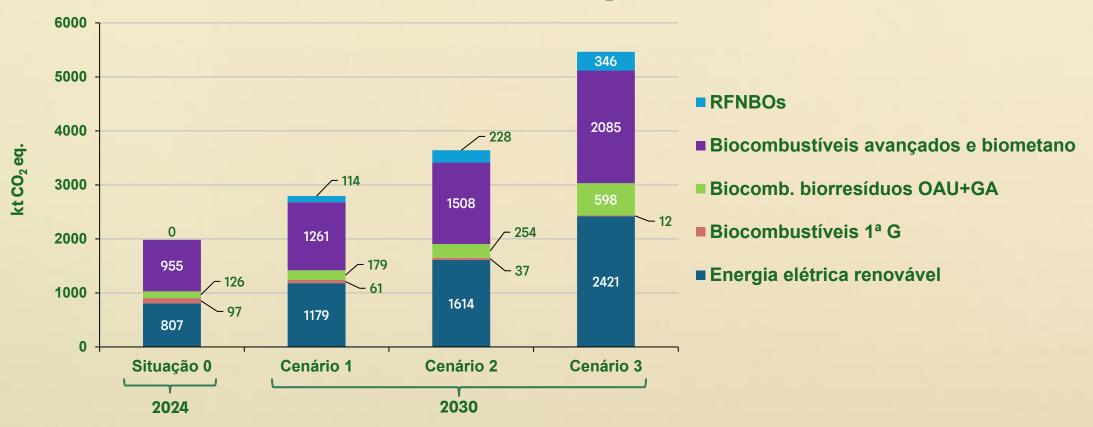

Evolução francamente otimista

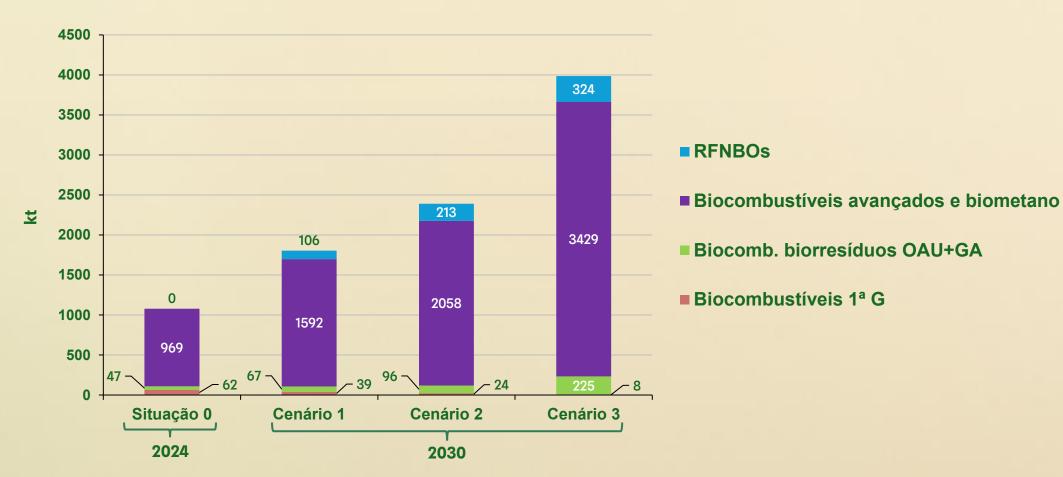
das projeções de evolução dos vetores energéticos finais

Projeções de Vetores Energéticos nos Transportes (dois exemplos) | de 2024 a 2030



Contributo para o *mix* energético nos transportes | 2024 e 2030


Contribuição corrigida com os multiplicadores RED III


Emissões Evitadas de GEEs | 2024 e 2030

Com emissões de GEEs na eletricidade (0,107 t CO₂ eq./MWh)

Necessidade de MPs | 2024 e 2030

Cobertura das Necessidade de MPs | 2030

Matária prima	Dionovibilidada	Necessidades			Cobertura das necessidades	
Matéria-prima	Disponibilidade	Cenário 1	Cenário 1 Cenário 2 Cenário 3		Copertura das fiecessidades	
H ₂ verde (t)	0	1665	3330	4163	0	
OAU e GA (kt)	Mínimo: 57,3	67	96	225	0,86× no Cenário 1 a 0,25× no Cenário 3	
Água (m³)	Depende da região do país	69610	139220	232033	Depende da região do país (recurso cada vez mais escasso)	
OAU e GA (kt)	Máximo: 76,4	67	96	225	1,14× no Cenário 1 a 0,34× no Cenário 3	
CO ₂ biogénico (kt)	6583	35,15	70,30	87,88	187× no Cenário 1 a 75× no Cenário 3	
Biorresíduos para CBCs avançados e biometano (kt)	6661 ⁽¹⁾	1592	2058	3429	4,18× no Cenário 1 a 1,94× no Cenário 3	
Biorresíduos para CBCs avançados e biometano (kt)	9175 ⁽²⁾	1592	2058	3429	5,76× no Cenário 1 a 2,68× no Cenário 3	

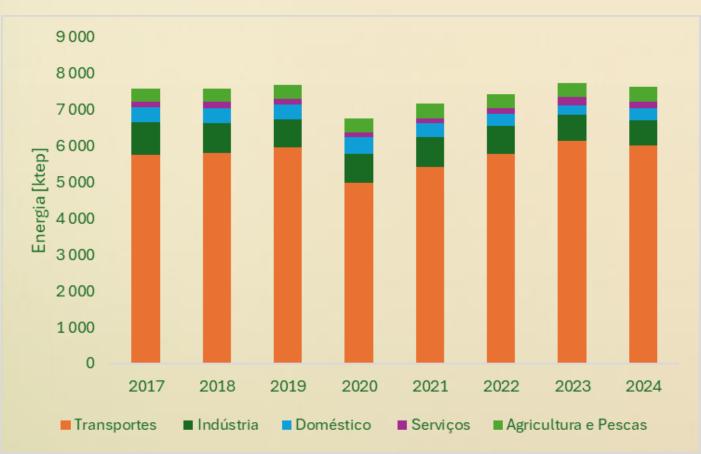
⁽¹⁾ Sem sobrantes florestais; (2) Com sobrantes florestais

Conclusões Parciais

Os CBCs avançados e o biometano são cruciais

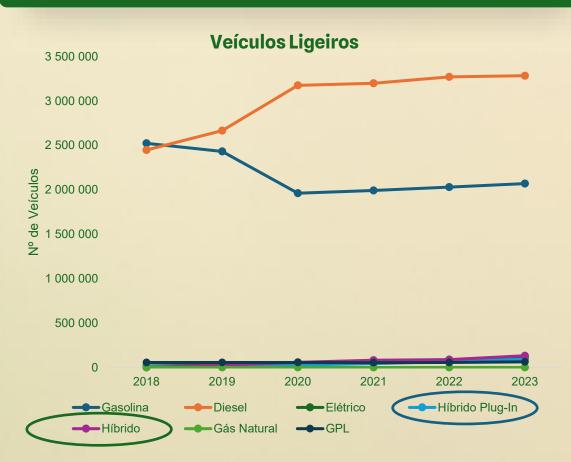
A eletrificação e os CBCs terão de ser complementares

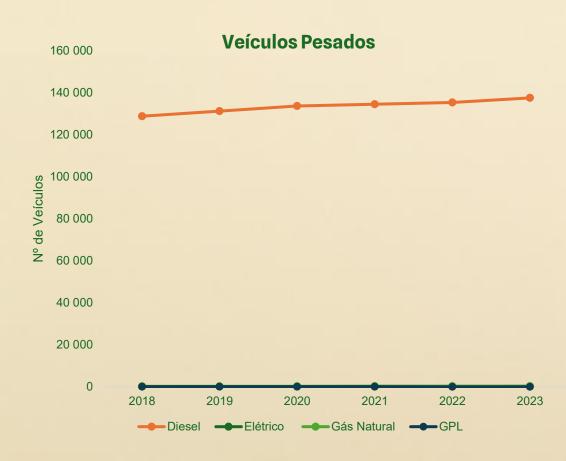
- Os OAU e GA podem ser limitativos, exigindo incentivo político (nacional e local) à recolha
- Portugal dispõe de recursos endógenos
 suficientes: CO₂ biogénico e biorresíduos para
 CBCs avançados e biometano, promovendo a
 Economia Circular
- A realidade em 2030 vai depender de investimento em infraestruturas, inovação tecnológica, estabilidade regulatória e políticas públicas (europeias e nacionais) coerentes e sem hesitações


OBJETIVO 5

Definir o potencial de descarbonização do setor dos transportes

Consumo de Energia Final de Origem Petrolífera | por setor

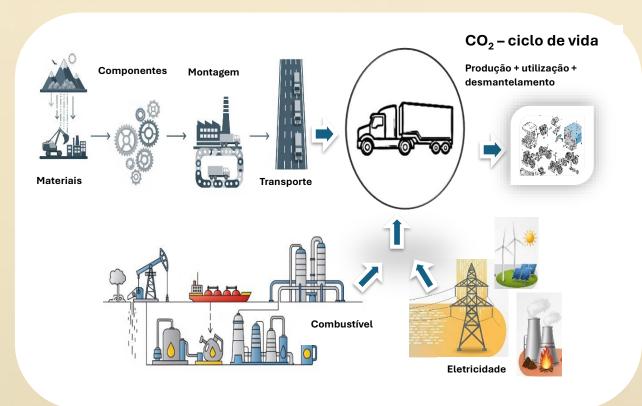

Evolução 2017 a 2024


- Transportes é o setor com uma maior dependência energética relativamente ao petróleo.
- É evidente a grande dificuldade para garantir a descarbonização do setor dos transportes.

- Idade média frota de veículos ligeiros em Portugal: **13,6 anos**
- Idade média frota de veículos pesados em Portugal: **15,5 anos**

Evolução do parque automóvel | 2018 a 2023

Considerações


- ⇒ Veículo trator (pesado mercadorias tipo LH5)
- ⇒ Ciclo de vida de 1.400.000 km, que equivale a uma utilização média de 15 anos.
- ⇒ Carga de referência, que corresponde a 19000 kg.
- Autonomia veículos 1600km (MCI) e 473km (bateria 800kWh) e 693km (bateria 1200 kWh – mais 2000kg)

Utilização do modelo CONCAWE

Análise de Ciclo de Vida

- ⇒ Well-to-Tank (WTT): Do poço ao tanque produção, transporte e distribuição do combustível;
- ⇒ Tank-to-Wheel (TTW): Do tanque à roda utilização do combustível no veículo;
- ⇒ Well-to-Wheel (WTW): Do poço à roda WTT + TTW.

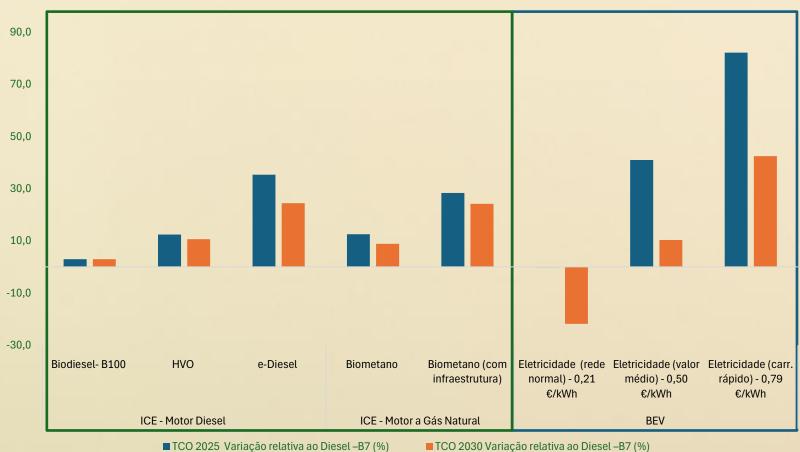
Análise Ciclo de Vida na utilização de Veículo Pesado - modelo CONCAWE

Análise Ciclo de Vida na utilização de Veículo Pesado | modelo CONCAWE

6:		Emissões - g CO ₂ eq/t.km					
Sistemas de Propulsão	Combustível	Fabrico	Prod. Eletric.	Comb. WTT	Comb. TTW sem	CO ₂ Reciclado	Emissões de GEEs - totais
	Diesel - B7	3,25	n - T	11,63	42,28	2,85	57,15
ICE – Motor	Diesel - B100	3,25	-	22,49	2,9	43,94	28,64
Diesel	HVO	3,25	-	17,3	2,7	40,86	23,25
	e-Diesel	3,25	-	7,21	2,7	40,83	13,15
	CNG	3,76	-	8,62	40,15	1,39	52,53
CE - Motor a Gás Natural	LNG Biometano	3,65	101 - 1	11,94	40,76	-	56,35
Gas Naturai	(resíduos agrícolas)	3,76	-	-74,23	1,02	40,85	-69,45
BEV	Eletricidade – mix EU	8,02	24,6			- 1	32,62

Análise TCO de Veículo Pesado

|2023 - 2030


Combustível e	Custo	Custo Consumo n		Custo	
Energia	[valor de referência]	Presente estudo	Consumo medio	(€/km)	
Diesel - B7	1,22 € /l	1,58 €/I	30,7 l/100km	0,485	
Diesel - B100		1,58 €/I	33,1 l/100km	0,523	
HVO	1,36 €/I	1,95 €/I	31,93 l/100km	0,623	
e-Diesel	2,51 €/I	2,51 €/I	31,93 l/100km	0,801	
Biometano	2,04 €/kg	2,04 €/kg	29,4 kg/100km	0,600	
Biometano (com infraestrutura)	2,68 €/kg	2,68 €/kg	29,4 kg/100km	0,788	
		0,21€/kWh, (rede normal)		0,302	
Eletricidade	0,21 €/kWh	0,50 €/kWh (valor médio)	143,65 kWh/100km	0,718	
		0,79 €/kWh (carregamento rápido)		1,135	

TCO comparável, mas restrições significativas na utilização com BEV

Análise TCO de Veículo Pesado | 2023 - 2030

Conclusões Parciais

- 94,7% do consumo energético do setor dos transportes é do setor rodoviário, onde apenas 0,1% é dos veículos elétricos.
- Frota de pesados com uma idade média de 15,5 anos.

 Atingindo as metas para 2030, 90% da frota de veículos pesados em circulação continuará a ter MCI.
- Os CBCs revelaram um elevado potencial de descarbonização do setor dos transportes no horizonte de 2025-2030.

- Considerando os GEEs e do TCO, os combustíveis líquidos que apresentam maior potencial para a substituição do Diesel de origem fóssil, são o Diesel-B100 e o HVO.
- O TCO de um BEV é, na atualidade (2025), similar à de um veículo com MCI com motor Diesel-B7, mas com significativas limitações na utilização.
- O Biometano revelou-se como solução com maior potencial de descarbonização nos veículos pesados, seguida do e-diesel, HVO e B100, só depois destas surge a solução de energia elétrica (mix) em BEV.

OBJETIVO 6

Identificar possíveis caminhos e potenciais implicações da descarbonização

Alocação de cada biocombustível por tipo de CBCs

Considerando as projeções de disponibilidade definidas:

	Tipos de CBCs						
	Biocombustíveis de 1ª Geração						
Biocombustível	FAME HVO		Bioetanol				
Alocação (%)	95	5	0				
	Biocombustíveis de Biorresíduos (OAU+GA)						
Biocombustível	FAME	HVO	Bioetanol				
Alocação (%)	90	10	0				
	Biocombustíveis avançados – Líquidos						
Biocombustível	FAME	HVO	Gasolina Sintética				
Alocação (%)	65	30	5				

Consumo de combustível, por tecnologia e tipologia de veículo

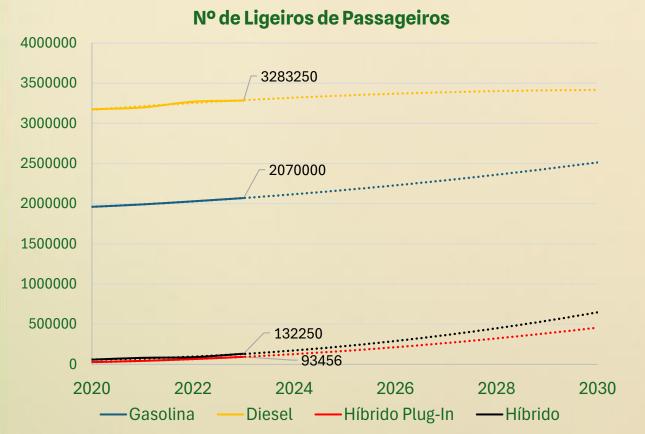
Considerando valores médios:

Consumo de Combustível (I/100 km)								
Gasolina	Diesel	Híbrido Plug- in Gasolina	Híbrido Plug-in Gasóleo	Híbrido Gasolina	Híbrido Gasóleo	Gás Natural (kg/100kms)		
Ligeiros de Passageiros								
8	6	6,4	4,8	7,2	5,4			
	Ligeiros de Mercadorias							
	10,5							
Pesados de Passageiros								
	31,5					29,4		
Pesados de Mercadorias								
	31,5					29,4		

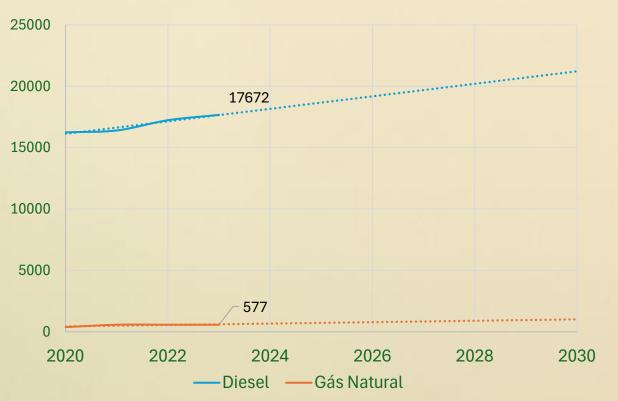
Definição dos cenários de utilização de CBCs | 2023 - 2030

Os veículos que consomem GN passam a consumir só biometano em 2030.

Apenas foi considerada a utilização de CBC com produção endógena

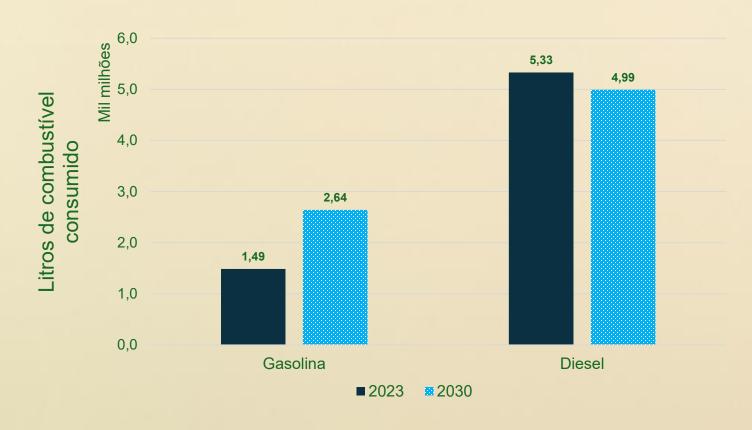

Consumo de gasolina sintética alocado aos v. ligeiros de passageiros Não foi considerada a produção nacional de bioetanol

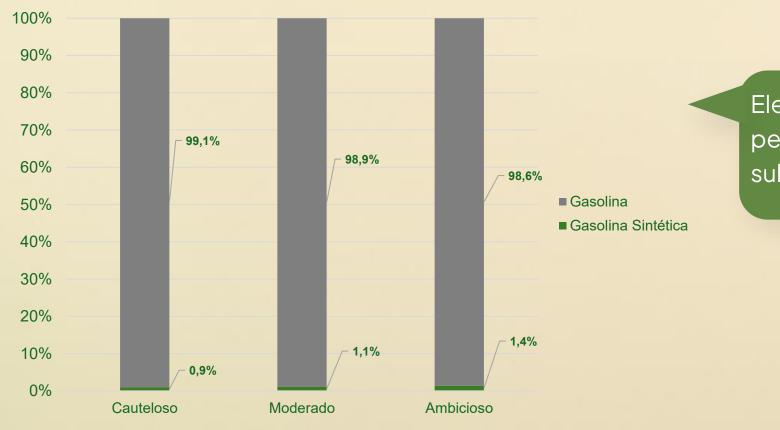
Projeções Frota de veículos ligeiros | 2023 a 2030



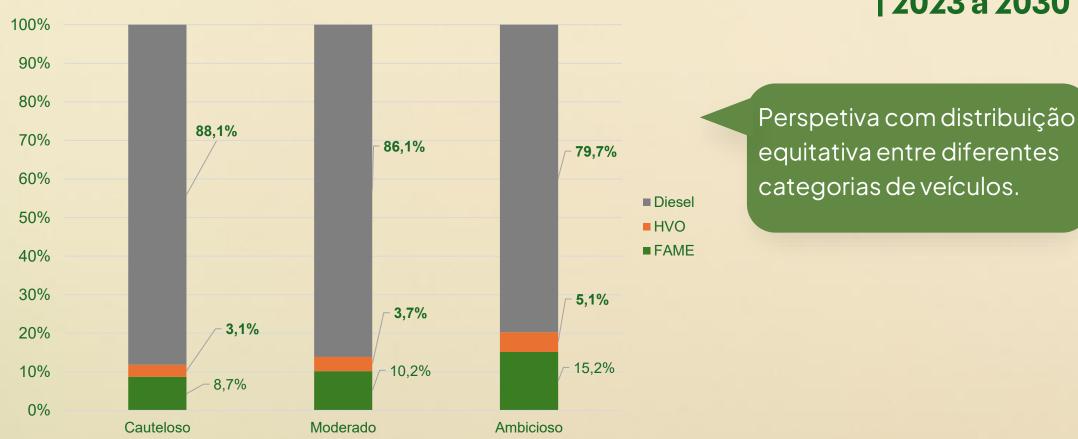
Projeções Frota de veículos pesados | 2023 a 2030

Nº de Pesados de Passageiros

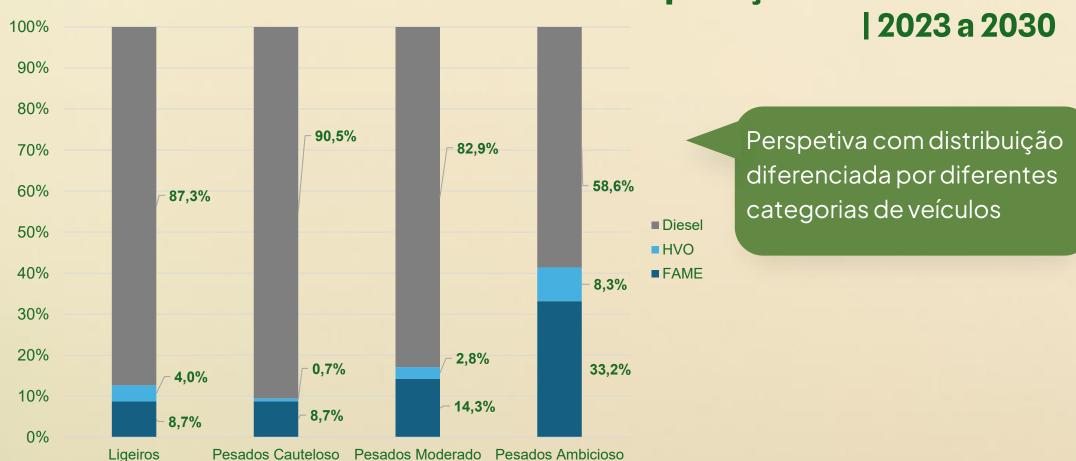

Nº de Pesados Mercadorias



Projeções Consumo Total Gasolina e Diesel | 2023 a 2030


Projeções Potencial de Incorporação – Gasolina Sintética | 2023 a 2030

Elevado potencial e interesse pela utilização de CBC em substituição da gasolina


Projeções Potencial de Incorporação - FAME e HVO | 2023 a 2030

Todos os cenários

Projeções
Potencial de Incorporação - FAME e HVO
1 2023 a 2030

É desejável e mesmo necessária a aposta em sistemas de produção de bioetanol ou gasolina sintética a partir de matérias endógenas para suprir as necessidades dos veículos ligeiros a gasolina (incluindo v. híbridos).

Possível uma incorporação próxima de 9% de FAME, para todos os veículos, podendo chegar a 15,2% num cenário Ambicioso.

Conclusões Parciais

É importante apostar no reforço da utilização de FAME e HVO fundamentalmente nos veículos pesados.

Prevê-se como necessário o aumento de produção de HVO, tornando possível uma Incorporação próxima de 3,1% e que poderá atingir 5,1% num cenário Ambicioso.

Conclusões Finais

Os CBCs são essenciais para se...

- 1 Atingir as ambiciosas metas europeias definidas para 2030
- 2 Atingir a neutralidade carbónica no setor dos transportes
- Promover a transição energética no setor dos transportes
- 4 Promover a complementaridade energética com a eletrificação
- 5 Promover a **Economia Circular** através da valorização de biorresíduos
- 6 Promover uma transição energética económica, ambiental e socialmente justa

- @plataforma_pcbc
- @combustiveisbaixocarbono

in @pcbc

@plataforma_pcbc